US ERA ARCHIVE DOCUMENT

# Mercury: the good, the bad, and the export ban

Edward J. Balistreri and Christopher M. Worley

ebalistr@mines.edu

Colorado School of Mines September 2007



#### **Bottom-line Contribution**

- Numeric model of US and World Mercury Markets
- Welfare analysis of Export Ban
- Alternative Policy: Direct Purchase and Retire
- Export Ban is inferior (or equivalent) if
  - Social benefits of domestic sequestration greater than about 1¢/100tonnes/household/year
  - (equivalent only if there is no price response)



#### **Overview**

- Background
- Analytical Model
- Computational Model
- Policy Simulation Results
- Conclusion



## Mercury: the good, and the bad

- Mercury is a useful resource
  - Science
  - Industry
- Mercury is a toxic heavy metal
  - Bioaccumulates
  - Global transboundary pollutant
  - Special RCRA Laws



## Commodity Mercury in the US

- Mercury demand is on a steady decline in the US
  - High environmental valuations
  - Inexpensive knowledge capital
  - Substitute technologies
- Mercury supply is high
  - Byproduct Mercury: 50%
  - Chlor-alkali industry: 25% (annualized)
  - Recycled and recovered: 25%
- At current prices we are looking at about 200 tonnes of output and about 100 tonnes of consumption
- Exports



## **Major Players**

- Foreign Artisanal Miners
- The Public
  - Multilateral Policies
  - Unilateral Policies
- Other Market Players
  - Kyrgystan, China, Artisanal Hg Miners
  - Gold Mining
  - Chlor-alkali, and PVC in China
  - Dental, Batteries, Switches, Instruments, etc.



#### **Ground Rules**

- Equity versus Efficiency
- Weak Law of Demand
- Weak Law of Supply
- ...all else equal
- Normalized Mercury Transaction



# Marginal vs. Inframarginal Trades





# Marginal vs. Inframarginal Trades





#### **Ground Rules (cont.)**

- Do mercury market participants respond to price?
- Is a market (economic) model appropriate?
- Higher or lower value shares do not indicate price response.
- Anecdotes about inframarginal transactions do not indicate a lack of price response.
- The price series for mercury looks just like any other market: shocks happen, prices react, and the market clears.



## Recent Prices (compiled from Platts)





## **US and World Mercury Markets**





## **US Market**





#### **Model**

$$q_d = a_d + b_d P_{us}$$

$$q_s = a_s + b_s P_{us}$$

$$r_d = c_d + d_d P_w$$

$$r_s = c_s + d_s P_s$$



#### Model cont.

**US Market Clearance:** 

$$q_s - q_d - E - G \ge 0 \quad \perp \quad P_{us} \ge 0$$

World Market Clearance:

$$r_s + E - r_d \ge 0$$
  $\perp$   $P_w \ge 0$ 

Export Activity:

$$P_{us} - P_w \ge 0 \quad \perp \quad E \ge 0$$

Surplus tracking:

$$S - q_s + q_d + E + G \ge 0 \quad \bot \quad S \ge 0.$$

Purchase until the target is hit:

$$P_{us} - P_w^1 \ge 0 \quad \perp \quad G \ge 0.$$



## **Benchmark Reference Quantities**

|                |                   | tonnes (t) of mercury |
|----------------|-------------------|-----------------------|
| US             |                   |                       |
| Demand         | $(q_d^0)$         | 100                   |
| Supply         | $(q_s^0)$         | 200                   |
| <b>Exports</b> | $(q_s^0 - q_d^0)$ | 100                   |
| World          |                   |                       |
| Demand         | $(Q_d^0)$         | 3000                  |
| Supply         | $(Q_s^0)$         | 3000                  |



## **Benchmark Unit-value Assumptions**

|                                      |              | $\phi/100t$ per     |
|--------------------------------------|--------------|---------------------|
|                                      | <b>\$/</b> t | <b>US</b> household |
| Market Price $(P_{us}^0 = P_w^0)$    | \$16,000     | 1.6¢                |
| Annual Marginal Benefit of           |              |                     |
| Domestic Sequestration ( $MB_{US}$ ) | \$10,000     | 1.0¢                |
| Annual Marginal Cost                 |              |                     |
| of Sequestration                     | \$1,000      | 0.1¢                |



#### **Central Values of Key Response Parameters**

|               |                  | <b>Local Elasticity</b> | Implied<br>Intercept |  |  |
|---------------|------------------|-------------------------|----------------------|--|--|
| US            |                  |                         |                      |  |  |
| Demand        | $(\eta_{US})$    | 0.1                     | 110t                 |  |  |
| Supply        | $(\gamma_{US})$  | 0.1                     | 180t                 |  |  |
| Rest of World |                  |                         |                      |  |  |
| Demand        | $(\eta_{ROW})$   | 0.5                     | 4500t                |  |  |
| Supply        | $(\gamma_{ROW})$ | 0.2                     | 2320t                |  |  |



## US Welfare Analysis (central case)

| Account               | Export Ban (\$thousands) | Direct Purchase<br>(\$thousands) |
|-----------------------|--------------------------|----------------------------------|
| Consumer Surplus      | 1,680                    | -77                              |
| Producer Surplus      | -3,040                   | 154                              |
| Government            | 0                        | -1,701                           |
| Sequestration         | -70                      | -101                             |
| <b>US</b> Environment | -300                     | 14                               |
| No Exports            | +X                       | +X                               |
| Total                 | +X-1,730                 | +X-1,711                         |



#### Mercury Leakage Rates (%) at zero US exports

|                | Supply Elasticity ( $\gamma_{ROW}$ ) |     |     |     |
|----------------|--------------------------------------|-----|-----|-----|
|                | 0                                    | 0.2 | 1.0 | 100 |
| Demand         |                                      |     |     |     |
| Elasticity     |                                      |     |     |     |
| $(\eta_{ROW})$ |                                      |     |     |     |
| 0.1            | 0                                    | 66  | 91  | 100 |
| 0.5            | 0                                    | 28  | 66  | 100 |
| 1.0            | 0                                    | 16  | 49  | 99  |



#### **Export Ban (\$thousands) relative to the Direct Purchase**

| <b>Marginal Social Benefit of</b> |
|-----------------------------------|
| Sequestration ( $MB_{US}$ )       |

|                           | \$5,000/ <i>t</i> | \$10,000/t | \$20,000/t | \$30,000/t |
|---------------------------|-------------------|------------|------------|------------|
| Elasticities              |                   |            |            |            |
| $(\eta_{US},\gamma_{US})$ |                   |            |            |            |
| (0.0, 0.0)                | 0                 | 0          | 0          | 0          |
| (0.1, 0.0)                | -46               | 6          | 111        | 216        |
| (0.0, 0.1)                | -92               | 13         | 223        | 432        |
| (0.1, 0.1)                | -138              | 19         | 334        | 648        |
| (0.2, 0.1)                | -183              | 26         | 445        | 864        |
| (0.1, 0.2)                | -230              | 32         | 556        | 1,080      |
| (0.2, 0.2)                | -276              | 39         | 668        | 1,296      |



#### **Conclusion**

- Quantitative framework is useful
- Elasticity estimation
- Environmental valuations
- Mercury problem is highly tractable
  - Sequestration cost is low
  - Eliminating exports is relatively cheap
- Export ban cannot generate incentives to
  - Curtail domestic mercury use
  - Intensify mercury recovery
- ...and will likely do the opposite

